Minimally Competent *Lewis* Acid Catalysts: Indium(III) and Bismuth(III) Salts Produce Rhamnosides (=6-Deoxymannosides) in High Yield and Purity

by Clifford Coss^a), Tucker Carrocci^a), Raina M. Maier^b), Jeanne E. Pemberton^a), and Robin Polt^{*a})

^a) Carl S. Marvel Laboratories, Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA (phone: +1-520-3702654; fax: +1-520-6216322;

e-mail: polt@u.arizona.edu)

^b) Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, AZ 85721, USA

This paper is dedicated to *Dieter Seebach* for the wonderful science that he has showed us all as a chemist, and for the kindness he has showed me as a person

Glycosylation of decan-1-ol (2), (\pm) -decan-2-ol (3), and (\pm) -methyl 3-hydroxydecanoate (4) with Lrhamnose peracetate **5** to produce rhamnosides (=6-deoxymannosides) **6**, **7**, and **8** in the presence of *Lewis* acids BF₃·Et₂O, Sc(OTf)₃, InBr₃, and Bi(OTf)₃ was studied (*Table 1*). While the strong *Lewis* acids BF₃·Et₂O and Sc(OTf)₃ were effective as glycosylation promoters, they had to be used in excess; however, glycosylation required careful control of reaction times and temperatures, and these *Lewis* acids produced impurities in addition to the desired glycosides. Enantiomerically pure rhamnosides (*R*)-1 and (*S*)-1 (*Fig.*) were obtained from L-rhamnose peracetate **5** and (\pm)-benzyl 3-hydroxydecanoate (**9**) *via* the diastereoisomeric rhamnosides **10** (*Table 2*; *Scheme 3*). The much weaker *Lewis* acids InBr₃ and Bi(OTfl)₃ produced purer products in high yield under a wider range of conditions (higher temperatures), and were effective glycosylation promoters even when used catalytically (<10% catalyst; *Table 2*). We refer to these *Lewis* acids as 'minimally competent *Lewis* acids' (*cf. Scheme 4*).

Introduction. – Earlier studies [1] directed toward the glycosylation of serine and threonine [2] with readily available sugar peracetates [3] for the efficient production of O-linked glycopeptides [4-6] led us to explore the use of weaker rather than stronger *Lewis* acids in conjunction with higher temperatures with these relatively unreactive per-O-acetylated glycosyl donors [7]. The discovery that the weak *Lewis* acid InBr₃ was effective led us explore this approach in the synthesis of rhamnolipids [8]. *Rademann* and co-workers' synthesis was quite elegant for the production of a rhamnolipid library [9] but did not provide a robust, scalable approach that could be used to produce larger amounts for the study of their surfactant properties [10].

We required rhamnoside diastereoisomers, (R)-1 and (S)-1 (*Fig.*), as well as the ability to produce various chain lengths at will. These single-chain glycosides are related to bacterial rhamnolipids [8][9], which are typically produced as mixtures of various chain lengths [10][11]. Bacterial rhamnolipids, particularly those produced by *Pseudomonas aeruginosa* show a great deal of promise for the environmental remediation of oil spills [12][13] and toxic metals [14][15].

Results. – The first glycosylation reactions were performed with decan-1-ol (2) as a model glycosyl acceptor and β -lactose peracetate as a model glycosyl donor. Heating

^{© 2012} Verlag Helvetica Chimica Acta AG, Zürich

Figure. Diastereoisomeric glycolipids (rhamnolipid analogues) (R)- and (S)-1

mixtures of the donor and acceptor in a sealed tube (by means of microwaves) in ClCH₂CH₂Cl as solvent in the presence of InBr₃ or other *Lewis* acids was used to define reaction conditions (*Scheme 1*). The classical *Zemplèn* deacylation methodology (MeONa/MeOH pH \approx 9) was used to remove the acetate protecting groups to provide the nonionic surfactant β -decyl lactoside in 50% yield. Higher temperatures (>80°) or longer reaction times for the glycosylation resulted in the formation of α -lactoside and product degradation.

Scheme 1. Synthesis of β -Decyl Lactoside from the Peracetate of β -Lactose

These were the initial conditions used for the synthesis of L-rhamnosides. The requisite fatty acid was prepared from the corresponding β -keto ester by simple reduction with NaCNBH₃ [16][17], or by enantioselective reduction by means of *Noyori*'s method [18]. The β -keto ester in turn was prepared from the appropriate acyl chloride and *Meldrum*'s acid [19] as depicted in *Scheme 2*.

L-Rhamnose (=6-deoxy-L-mannose) was converted to the peracetate donor **5** with Ac₂O and pyridine, and subjected to glycosylation conditions (microwaves) in the presence of one of three different *Lewis* acids. Initially, the BF₃ · Et₂O, Sc(OTf)₃ (Tfl = CF₃SO₂), and InBr₃ in ClCH₂CH₂Cl were examined as promoters in conjunction with the three acceptors decan-1-ol (**2**), (±)-decan-2-ol (**3**), and methyl (±)-3-hydroxyde-canoate (**4**) to produce glycosides **6**, **7**, and **8**, respectively (*Table 1*). Other solvent systems were explored: CH₂Cl₂/PhMe 1:5; CHCl₃, and CCl₄ were found to be effective, but several other solvents were not useful, *i.e.*, in Et₂O, THF, and DMF, was formed no product. Temperatures above 80° resulted in product mixtures.

Further studies indicated that, similar to $InBr_3$, the bismuth(III) salt Bi(OTfl)₃ [20] was also a minimally competent *Lewis* acid, but with properties that were superior to $InBr_3$ for these reactions, as shown in *Table 2*. In addition to being less hygroscopic than

Table 1. Synthesis of Glycosides from L-Rhamnose Peracetate 5 and Decanols 2-4 in ClCH₂CH₂Cl, in the Presence of Different Lewis Acids^a)

^a) Conditions: 2.2 equiv. of L-rhamnose peracetate **5** and 1 equiv. of decanol **2**, **3**, or **4** in ClCH₂Cl₂Cl at 60° in a sealed tube. ^b) Yield of **6** (from **2**), **7** (from **3**), and **8** (from **4**).

indium(III) compounds, bismuth(III) salts are generally regarded as nontoxic, and are much cheaper than the corresponding indium(III) salts [21]. Additionally it was discovered that MeCN was the best solvent for rhamnoside formation [22], and that conventional reflux conditions with this solvent were ideal. The methyl ester **8** was replaced by benzyl ester **9** to permit hydrogenolysis and UV monitoring. The minimally competent Bi(OTf)₃ provided higher yields than InBr₃, and conventional heating conditions with MeCN as the solvent was reproducible, forming the rhamnosides **6**, **7**, and **10** from decan-1-ol (**2**), (\pm)-decan-2-ol (**3**), and benzyl (\pm)-3-hydroxydecanoate (**9**).

Hydrogenolysis of the diastereoisomer mixture of benzyl esters **10** produced a mixture of acids **11** in which the L-rhamnoside head group functioned as a very effective

^a) Conditions: 2.2 equiv. of L-rhamnose peracetate **5** and 1 equiv. of **2**, **3**, or **9** in MeCN under reflux, 2.5 h. ^b) Yield of **6** (from **2**), **7** (from **3**), and **10** (from **9**).

chiral auxiliary during chromatography (*Scheme 3*), permitting facile separation of the diastereoisomeric acids (R)-**11** and (S)-**11**. Subsequent *Zemplèn* deacylation of the purified diastereoisomers provided the corresponding rhamnosides (R)-**1** and (S)-**1** in excellent yield and purity.

Discussion. – A major benefit of minimally competent *Lewis* acid is the fact that it can be used as a true catalyst, rather than stoichiometrically as a promoter of glycosylation. Stronger *Lewis* acids will retain the acetate leaving group from the donor, essentially becoming *Brønsted* acids as the glycosylation reaction proceeds. The minimally competent *Lewis* acids release the acetate to form acetic acid during the reaction, with concomitant regeneration of the catalyst (*Scheme 4*). Thus, the use of an 'H-atom acceptor' such as tetramethylurea [23] is not necessary or even desirable for such glycosylations.

Discovery of a second minimally competent *Lewis* acid, Bi(OTfl)₃, augers well for the discovery of more catalysts for glycosylation. It is noteworthy that the use of the relatively simple and robust sugar peracetates in conjunction with these mild *Lewis* acids allows for considerable leeway in the development of glycosylation conditions. Thus, the use of highly reactive glycosyl donors (*e.g.*, bromides, trichloroacetimidates, sulfoxides) for use with stoichiometric or even excess amounts of expensive, unstable, and/or exotic promoters (Ag⁺, Hg²⁺ salts, BF₃ · Et₂O [Me₂SSMe](OTfl), *etc.*), and long reaction times are no longer required. Although above-described reactions were performed with 10% Bi(OTfl)₃ and nominally dry MeCN so that the reactions go to completion within a few hours, scrupulously dry conditions permit the use of much smaller amounts of catalyst. Further experimentation with more complex glycosides, polysaccharides, and glycolipids is clearly warranted.

Experimental Part

1. General. All glassware was flame-dried prior to reactions, and all reactions were done under Ar. Microwave: 900 W Emerson MW8992SB microwave oven, purchased from a Target department store. Flash chromatography (FC): silica gel 60 (SiO₂, 200–400 mesh; Geduran No. EM-11567-1); Horizon HPFC system (Biotage, Inc.). HPLC: Varian-Prostar HPLC system, with a Prostar-330 photodiode array detector and a Phenomenex-Jupiter (250 mm × 21.2 mm, 15 µm) C_{18} semi-prep. column. M.p.: uncorrected. ¹H- and ¹³C-NMR Spectra: Bruker-DRX-400 (400 MHz), -DRX-500 (500 MHz), and -DRX-600 (600 MHz) spectrometers; in CDCl₃, (D₆)DMSO, or CD₃OD; δ in ppm rel. to Me₄Si as internal standard, J in Hz; all NMR spectra were analyzed and interpreted with the MestReNova® software. ESI-MS: Thermo-Finnigan LCQ Deca with pos. and neg. detection, MeOH/H₂O 1:1 solvent system; in m/z (rel. %).

2. Decyl β -Lactoside. A mixture of AcOK (6.56 g, 66.8 mmol) and Ac₂O (21 ml, 220 mmol) was heated under reflux, followed by slow addition of lactose (1.01 g, 2.79 mmol) to the boiling mixture. The mixture was stirred for 5 min and allowed to cool to r.t., where it was then diluted with CH₂Cl₂ and washed with ice-cold H₂O, 1% NaHCO₃, sat. NaHCO₃, and sat. NaCl soln. The org. layer was dried (MgSO₄) and concentrated to a colorless oil which was then dissolved in a minimal amount of CH₂Cl₂ and recrystallized by addition of Et₂O: β -lactose peracetate (58%). White, crystalline solid. M.p. 104–106°.

The β -lactose peracetate (1.78 g, 2.62 mmol), decan-1-ol (**2**; 0.50 ml, 2.62 mmol), and InBr₃ (0.093 g, 0.262 mmol) were added to a 50 ml triple-walled resealable vessel (internally threaded with a *Teflon* plug), dissolved in ClCH₂CH₂Cl (3–4 ml), and irradiated in a 900 W *Emerson-MW8992SB* microwave oven (power level 6) for 2 min. The crude yellow oil was purified b FC (gradient AcOEt/hexanes 1:9 \rightarrow 2:8 \rightarrow 3:7 \rightarrow 4:6): *decyl* β -*lactoside peracetate* (60%). White foam. M.p. 94–99°. ¹H-NMR (500 MHz, CDCl₃): 5.31 (*d*, *J* = 3.2, 1 H); 5.16 (*t*, *J* = 9.3, 1 H); 5.07 (*dd*, *J* = 10.4, 7.9, 1 H); 4.92 (*dd*, *J* = 10.4, 3.4, 1 H); 4.85 (*dd*, *J* = 9.5, 8.0, 1 H); 4.49–4.38 (*m*, 3 H); 4.15–4.01 (*m*, 3 H); 3.87–3.72 (*m*, 3 H); 3.56 (*ddd*, *J* = 9.8, 5.0, 1.9, 1 H); 3.41 (*dt*, *J* = 9.6, 6.8, 1 H); 2.12 (*s*, *J* = 2.9, 3 H); 2.09 (*s*, *J* = 7.8, 3 H); 2.06–1.97 (*m*, 12 H); 1.93 (*s*, *J* = 5.9, 3 H); 1.58–1.45 (*m*, 2 H); 1.33–1.16 (*m*, 14 H); 0.85 (*t*, *J* = 6.9, 3 H). ¹³C-NMR (125 MHz, CDCl₃): 170.2; 170.0; 169.9; 169.6; 169.4; 168.9; 101.0; 100.6; 76.3; 72.9; 72.6; 71.8; 71.0; 70.7; 70.2; 69.2; 66.7; 62.1; 60.8; 31.9; 29.6; 29.5; 29.4; 29.3; 29.3; 25.8; 22.7; 20.8; 20.8; 20.7; 20.6; 20.5; 14.1. ESI-MS (pos.): 815.1 (17, [*M*+K]⁺), 799.2 (99, [*M*+Na]⁺), 794.1 (53, [*M*+NH₄]⁺).

The *decyl* β -*lactoside peracetate* (2.93 g, 3.77 mmol) was dissolved in dry MeOH (30 ml) under Ar, and a 25% (wt./v) MeONa/MeOH soln. (0.5 ml) was added dropwise until the soln. reached pH 9–10. The mixture was stirred for 24 h (TLC monitoring) and then neutralized by *Dowex*[®] 50WX8–100 ionexchange resin. The mixture was filtered and the filtrate concentrated: *decyl* β -*lactoside* (72%). White solid. M.p. 140–160° (dec.). ¹H-NMR (500 MHz, (D₆)DMSO): 6.04 (s, 1 H); 5.84–5.31 (*m*, 4 H); 5.17 (*dd*, *J* = 19.1, 7.5, 2 H); 4.73 (*dt*, *J* = 6.6, 5.8, 2 H); 4.67–4.14 (*m*, 19 H); 3.99 (*t*, *J* = 8.2, 1 H); 3.50 (*dt*, *J* = 3.6, 1.8, 1 H); 2.37–2.13 (*m*, 14 H); 1.85 (*t*, *J* = 6.9, 3 H). ¹³C-NMR (125 MHz, (D₆)DMSO): 103.8; 102.5; 80.8; 75.5; 75.0; 74.8; 73.2; 73.1; 70.6; 68.7; 68.1; 60.6; 60.4; 31.3; 29.3; 29.0; 29.0; 28.9; 28.7; 25.5; 22.1; 14.0. ESI-MS (pos.): 987.0 (100, [2 *M* + Na]⁺), 964.9 (13, [2 *M* + H]⁺), 505.4 (12, [*M* + Na]⁺), 482.9 (10, [*M* + H]⁺).

3. Microwave Procedure for Rhamnosides 6-8 (Table 1). Rhamnose peracetate 5 (1.2 equiv.), alcohol (1 equiv.), and Sc(OTf)₃ (1 equiv.), InBr₃ (0.1 equiv.), or BF₃ · Et₂O (5 equiv.) were dissolved in dry ClCH₂CH₂Cl (1.5 ml) in a flame-dried triple-walled resealable vessel (internally threaded with a *Teflon* plug), and the vessel was microwave-irradiated (900 W *Emerson MW8992SB*) for 2 min on power level 6. The slightly yellow mixture was neutralized with sat. NaHCO₃ soln., the org. layer washed with H₂O, dried (MgSO₄), and concentrated, and the obtained oil purified by FC (20% AcOEt/hexanes). Yields of 6-8 in *Table 1*.

Decyl 6-*Dexoy*-α-L-*mannopyranoside Triacetate* (6): Colorless oil. R_t (30% AcOEt/hexanes) 0.64. ¹H-NMR (500 MHz, CDCl₃): 5.28 (*dd*, *J* = 10.1, 3.5, 1 H); 5.20 (*dd*, *J* = 3.5, 1.7, 1 H); 5.03 (*t*, *J* = 9.9, 1 H); 4.68 (*d*, *J* = 1.5, 1 H); 3.84 (*dq*, *J* = 9.9, 6.3, 1 H); 3.63 (*dt*, *J* = 9.5, 6.8, 1 H); 3.39 (*dt*, *J* = 9.6, 6.6, 1 H); 2.12 (*s*, 3 H); 2.02 (*s*, 3 H); 1.96 (*s*, 3 H); 1.59–1.53 (*m*, 2 H); 1.35–1.21 (*m*, 14 H); 1.19 (*d*, *J* = 6.3, 3 H); 0.86 (*t*, *J* = 6.9, 3 H). ¹³C-NMR (125 MHz, CDCl₃): 170.2; 170.0; 169.9; 97.4; 71.3; 70.0; 69.2; 68.2; 66.2; 31.9; 29.6; 29.5; 29.4; 29.3; 29.3; 26.1; 22.7; 20.9; 20.8; 20.7; 17.4; 14.1.

(1R)- and (1S)-1-Methylnonyl 6-Deoxy- α -L-mannopyranoside Triacetate (**7**; diastereoisomer mixture 1:1): Colorless oil. R_f (30% AcOEt/hexanes) 0.68. ¹H-NMR (500 MHz, CDCl₃): 5.28 (dd, J = 10.1, 3.5, 1 H); 5.25 (dd, J = 10.1, 3.5, 1 H); 5.15 – 5.11 (m, 2 H); 5.02 (t, J = 9.9, 1 H); 5.01 (t, J = 10.0, 1 H); 4.79 (d, J = 1.7, 1 H); 4.77 (d, J = 1.7, 1 H); 3.92 (dq, J = 9.8, 6.3, 1 H); 3.89 (dq, J = 9.8, 6.3, 1 H); 3.70 (dt, J = 11.8, 6.0, 1 H); 3.64 (dt, J = 12.4, 6.1, 1 H); 2.11 (s, 6 H); 2.01 (s, 3 H); 2.01 (s, 3 H); 1.95 (s, 6 H); 1.60 – 1.44 (m, 2 H); 1.44 – 1.30 (m, 2 H); 1.26 (dd, J = 26.5, 8.0, 24 H); 1.16 (d, J = 6.3, 9 H); 1.08 (d, J = 6.1, 3 H); 0.84 (t, J = 6.9, 3 H); 0.84 (t, J = 7.0, 3 H). ¹³C-NMR (125 MHz, CDCl₃): 170.2; 170.1; 170.0; 169.9; 169.9; 97.0; 94.9; 75.8; 73.1; 71.4; 71.2; 70.6; 70.4; 69.2; 69.2; 66.4; 66.2; 36.9; 36.2; 31.8; 31.8; 29.6; 29.5; 29.5; 29.5; 29.2; 29.2; 25.6; 25.3; 22.6; 21.1; 20.9; 20.8; 20.7; 18.9; 17.3; 17.3; 14.1.

Methyl (3R)- and (3S)-3-[(2,3,4-Tri-O-acetyl-6-deoxy- α -L-mannopyranosyl)oxy]decanoate (8; diastereoisomer mixture 1:1): Colorless oil. R_f (pair of diastereoisomers) 0.45 and 0.40. ¹H-NMR $(500 \text{ MHz}, \text{CDCl}_3): 5.21 (d, J = 3.4, 1 \text{ H}); 5.19 (d, J = 3.4, 1 \text{ H}); 5.11 (dd, J = 3.4, 1.8, 1 \text{ H}); 5.07 (dd, J = 3.4, 1.8, 1 \text{ H}); 5.01 (t, J = 9.9, 1 \text{ H}); 4.99 (t, J = 10.0, 1 \text{ H}); 4.83 (d, J = 1.5, 1 \text{ H}); 4.80 (d, J = 1.5, 1 \text{ H}); 4.10 - 3.97 (m, 2 \text{ H}); 3.94 - 3.82 (m, 2 \text{ H}); 3.66 (s, 3 \text{ H}); 3.65 (s, 3 \text{ H}); 2.54 (dd, J = 15.3, 8.1, 1 \text{ H}); 2.50 (dd, J = 15.5, 7.5, 1 \text{ H}); 2.44 (dd, J = 15.4, 6.4, 1 \text{ H}); 2.43 (dd, J = 15.4, 6.9, 1 \text{ H}); 2.10 (d, J = 2.8, 6 \text{ H}); 2.00 (d, J = 3.0, 6 \text{ H}); 1.93 (d, J = 1.9, 6 \text{ H}); 1.63 - 1.40 (m, 4 \text{ H}); 1.36 - 1.17 (m, 16 \text{ H}); 1.16 (d, J = 6.3, 1 \text{ H}); 1.15 (d, J = 6.2, 1 \text{ H}); 0.83 (td, J = 6.9, 3.5, 6 \text{ H}). ^{13}\text{C-NMR} (125 \text{ MHz}, \text{CDCl}_3): 171.7; 171.6; 170.1; 170.0; 169.9; 169.9; 97.5; 95.9; 76.3; 74.9; 71.1; 70.3; 70.2; 69.1; 69.0; 66.7; 66.6; 51.7; 51.6; 39.9; 39.3; 35.0; 33.3; 31.7; 31.7; 29.4; 29.4; 29.1; 29.1; 25.1; 24.7; 22.6; 22.6; 20.9; 20.9; 20.8; 20.7; 17.2; 17.2; 14.0.$

4. Conventional Reflux Procedure for Rhamnosides 6, 7, and 10 (Table 2). To a soln. of rhamnose peracetate 5 (2.2 equiv.) in dry MeCN, the alcohol (1 equiv.) and either Bi(OTf)₃ (0.10 equiv.) or InBr₃ (0.10 equiv.) were added. The mixture was refluxed under a *Liebig* condenser for 2.5 h and then allowed to cool to r.t. For Bi(OTf)₃, the yellow-brown mixture was diluted with CH₂Cl₂, *Celite*[®] was added, the mixture filtered, and the filtrate concentrated to a yellow-brown syrup. For InBr₃, the yellow mixture was diluted with CH₂Cl₂ and neutralized with sat. NaHCO₃ soln., and the org. layer washed with H₂O, dried (MgSO₄), and concentrated. Purification was achieved by FC (gradient hexanes/AcOEt $0 \rightarrow 20\%$). Yields of 6, 7, and 10 in *Table 2*.

Phenylmethyl (3R)- and (3S)-3-[(2,3,4-Tri-O-acetyl-6-deoxy-a-L-mannopyranosyl)oxy]decanoate (**10**; diastereoisomer mixture 45:55): Colorless oil. $R_{\rm f}$ (30% AcOEt/hexanes) 0.55. ¹H-NMR (500 MHz, CDCl₃): 7.36–7.27 (*m*, 10 H); 5.23 (*ddd*, J = 10.1, 3.4, 1.0, 2 H); 5.14 (*dt*, J = 4.4, 2.2, 1 H); 5.13–5.10 (*m*, 5 H); 5.02 (td, J = 10.0, 5.9, 2 H); 4.87 (*d*, J = 1.6, 1 H); 4.83 (*d*, J = 1.6, 1 H); 4.14–4.02 (*m*, 2 H); 3.95–3.86 (*m*, 2 H); 2.66–2.46 (*m*, 4 H); 2.12 (*d*, J = 5.9, 6 H); 2.04–1.99 (*m*, 6 H); 1.96 (*d*, J = 1.5, 6 H); 1.63–1.43 (*m*, 4 H); 1.37–1.19 (*m*, 23 H); 1.18 (*d*, J = 6.3, 3 H); 1.15 (*d*, J = 6.3, 3 H); 0.85 (*td*, J = 6.9, 3.7, 6 H). ¹³C-NMR (125 MHz, CDCl₃): 171.1; 170.9; 170.1; 170.0; 169.9; 135.7; 135.7; 128.5; 128.4; 128.2; 128.2; 97.4; 96.2; 76.1; 75.1; 71.1; 70.3; 70.2; 69.1; 69.1; 66.7; 66.7; 66.5; 66.4; 40.2; 39.5; 35.0; 33.4; 31.7; 29.5; 29.4; 29.1; 29.1; 25.1; 24.7; 22.6; 22.6; 20.9; 20.8; 20.7; 17.3; 14.1.

5. (3R)- and (3S)-3- $[(2,3,4-Tri-O-acetyl-6-deoxy-<math>\alpha$ -L-mannopyranosyl)oxy]decanoic Acid ((R)-11 and (S)-11, resp.). To a soln. of 10 (8.57 g, 15.6 mmol) in dry THF (100 ml) at r.t., a small amount of 10% (wt.) Pd/C was added under Ar. By means of a balloon, the flask was filled with H₂ gas (1 atm) and the mixture stirred vigorously at r.t. for 24 h. Then the mixture was purged with Ar, diluted with CH₂Cl₂, and filtered through *Celite®*, the filtrate concentrated, and the resulting oil purified by FC (Et₂O/hexanes 1:1 with 1% AcOH): (R)-11 (38%) and (S)-11 (33%).

Data of (R)-**11**: Colorless oil. $[a]_D = -30.6$ (c = 1.0, CHCl₃). R_f (Et₂O/hexanes 1:1 with 1% (v/v) AcOH) 0.26. ¹H-NMR (400 MHz, CDCl₃): 5.24 (dd, J = 10.1, 3.5, 1 H); 5.12 (dd, J = 3.4, 1.8, 1 H); 5.03 (t, J = 9.9, 1 H); 4.89 (d, J = 1.8, 1 H); 4.04 (dq, J = 11.7, 5.9, 1 H); 3.93 (dq, J = 9.8, 6.3, 1 H); 2.57 (dd, J = 15.8, 7.5, 1 H); 2.49 (dd, J = 15.8, 5.3, 1 H); 2.11 (s, 3 H); 2.03 (s, 3 H); 1.96 (s, 3 H); 1.65 – 1.50 (m, 2 H); 1.32 – 1.22 (m, 10 H); 1.18 (d, J = 6.3, 3 H); 0.89 – 0.84 (m, 3 H). ¹³C-NMR (100 MHz, CDCl₃): 176.2; 170.2; 170.1; 170.1; 97.5; 76.2; 71.1; 70.3; 69.1; 66.8; 39.3; 35.0; 31.7; 29.4; 29.1; 25.1; 22.6; 20.9; 20.8; 20.7; 20.7; 17.3; 14.0.

Data of (S)-**11**: Clear oil. $[a]_D = -47.9 (c = 1.0, CHCl_3); R_t (Et_2O/hexanes 1:1 with 1% (v/v) AcOH) 0.38. ¹H-NMR (400 MHz, CDCl_3): 5.23 (dd, <math>J = 10.1, 3.4, 1$ H); 5.14 (dd, J = 3.4, 1.8, 1 H); 5.02 (t, J = 9.9, 1 H); 4.82 (d, J = 1.7, 1 H); 4.07 (dq, J = 7.5, 5.9, 1 H); 3.93 (dq, J = 9.9, 6.3, 1 H); 2.63 (dd, J = 15.9, 7.6, 1 H); 2.52 (dd, J = 15.9, 4.8, 1 H); 2.12 (s, 3 H); 2.02 (s, 3 H); 1.96 (s, 3 H); 1.52 (ddd, J = 23.0, 14.2, 5.3, 2 H); 1.32–1.21 (m, 10 H); 1.15 (d, J = 6.3, 3 H); 0.87–0.82 (m, 3 H). ¹³C-NMR (101 MHz, CDCl₃): 176.7; 170.2; 170.1; 170.0; 96.4; 75.1; 71.1; 70.3; 69.1; 66.8; 39.9; 33.6; 31.7; 29.5; 29.1; 24.8; 22.6; 20.9; 20.8; 20.7; 172; 14.0.

6. (3R)- and (3S)-3-(6-Deoxy- α -L-mannopyranosyloxy)decanoic Acid ((R)-1 and (S)-1, resp.). To a soln. of (R)-11 (5.77g, 12.5 mmol) in dry MeOH (50 ml) at r.t., MeONa was added while stirring to achieve a pH 9–10 (monitoring by a drop of the mixture onto a moistened pH-indicator strip). The mixture was stirred at r.t. for 3.5 h and then quenched with Dowex H⁺ resin. The resin was removed by filtration and the filtrate concentrated to an oil. No further purification was required. However, redissolving of the product in a minimal amount of hexanes, followed by filtration, was occasionally required to remove residual Na⁺ salts: (R)-1 (99%). Colorless oil. [α]_D = -34.8 (c = 1.0, MeOH). $R_{\rm f}$ (10% MeOH/CH₂Cl₂ with 1% (ν/ν) AcOH) 0.20. ¹H-NMR (400 MHz, CD₃OD): 4.75 (d, J = 1.7, 1 H);

3.96 - 3.89 (m, 1 H); 3.65 (dd, J = 3.4, 1.7, 1 H); 3.61 - 3.53 (m, 1 H); 3.51 (dd, J = 9.5, 3.4, 1 H); 3.29 - 3.24 (m, 1 H); 2.34 (qd, J = 15.0, 6.4, 2 H); 1.54 - 1.43 (m, 2 H); 1.26 - 1.17 (m, 10 H); 1.14 (d, J = 6.3, 3 H); 0.80 (dd, J = 7.9, 6.0, 3 H).¹³C-NMR (100 MHz, CD₃OD): 176.2; 101.6; 76.9; 73.9; 72.7; 72.4; 70.2; 41.2; 36.4; 33.0; 30.7; 30.3; 26.3; 23.7; 17.9; 14.4. ESI-MS (neg.): 334.1 (12, M⁻), 333.1 (99, [M - H]⁻).

Glycolipid (*S*)-1 was obtained in the same fashion: Yield 99%. Colorless oil. $[a]_{\rm D} = -47.0 \ (c = 1.0, \text{MeOH})$. $R_{\rm f}$ (10% MeOH/CH₂Cl₂ with 1% (ν/ν) AcOH) 0.25. ¹H-NMR (400 MHz, CD₃OD): 4.66 (d, J = 1.7, 1 H); 3.93 (dq, J = 7.5, 5.7, 1 H); 3.62 (dd, J = 3.4, 1.7, 1 H); 3.58 – 3.45 (m, 2 H); 3.20 (t, J = 9.5, 1 H); 2.33 (ddd, J = 20.4, 14.8, 6.6, 2 H); 1.42 (dt, J = 9.1, 6.2, 2 H); 1.21 – 1.13 (m, 10 H); 1.09 (d, J = 6.2, 3 H); 0.77 – 0.73 (m, 3 H). ¹³C-NMR (100 MHz, CD₃OD): 176.5; 100.3; 75.9; 74.0; 72.7; 72.3; 70.1; 42.2; 34.5; 33.0; 30.7; 30.3; 25.9; 23.7; 17.9; 14.4. ESI-MS (neg.): 334.1 (12, M^-), 333.1 (99, [M - H]⁻).

REFERENCES

- [1] R. Polt, L. Z. Szabo, J. Treiberg, Y. Li, V. J. Hruby, J. Am. Chem. Soc. 1992, 114, 10249.
- [2] S. A. Mitchell, M. R. Pratt, V. J. Hruby, R. Polt, J. Org. Chem. 2001, 66, 2327.
- [3] C. M. Keyari, R. Polt, J. Carbohydr. Chem. 2010, 29, 181.
- [4] M. M. Palian, V. I. Boguslavsky, D. F. O'Brien, R. Polt, J. Am. Chem. Soc. 2003, 125, 5823.
- [5] M. Dhanasekaran, M. M. Palian, I. Alves, L. Yeomans, C. M. Keyari, P. Davis, E. J. Bilsky, R. D. Egleton, H. I. Yamamura, N. E. Jacobsen, G. Tollin, V. J. Hruby, F. Porreca, R. Polt, *J. Am. Chem. Soc.* 2005, *127*, 5435.
- [6] Y. Li, M. R. Lefever, D. Muthu, J. M. Bidlack, E. J. Bilsky, R. Polt, Future Med. Chem. 2012, 4, 205.
- [7] M. R. Lefever, L. Z. Szabò, B. Anglin, J. Hogan, L. Cooney, R. Polt, Carbohydr. Res. 2012, 351, 121.
- [8] F. G. Jarvis, M. J. Johnson, J. Am. Chem. Soc. 1949, 71, 4124.
- [9] J. Bauer, K. Brandenburg, U. Zähringer, J. Rademann, Chem. Eur. J. 2006, 12, 7116.
- [10] A. A. Bodour, K. P. Drees, R. M. Maier, Appl. Environ. Microbiol. 2003, 69, 3280.
- [11] A. K. Koch, O. Kappeli, A. Fiechter, J. Reiser, J. Bacteriol. 1991, 173, 4212.
- [12] Y. Zhang, R. M. Miller, Appl. Environ. Microbiol. 1992, 58, 3276.
- [13] C. N. Mulligan, R. N. Yong, B. F. Gibbs, Eng. Geol. 2001, 60, 193.
- [14] J. D. Desai, I. M. Banat, Microbiol. Mol. Biol. Rev. 1997, 61, 47.
- [15] F. J. Ochoa-Loza, J. F. Artiola, R. M. Maier, J. Environ. Qual. 2001, 30, 479.
- [16] D. Sames, R. Polt, Synlett 1995, SI, 552.
- [17] C. F. Lane, Synthesis 1975, 135.
- [18] M. Kitamura, M. Tokunaga, T. Ohkuma, R. Noyori, Org. Synth. 1998, 9, 589.
- [19] Y. Oikawa, K. Sugano, O. Yonemitsu, J. Org. Chem. 1978, 43, 2087.
- [20] N. M. Leonard, L. C. Wieland, R. S. Mohan, Tetrahedron 2002, 58, 8373.
- [21] K. Dill, E. L. McGowan, in 'The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds', Ed. S. Patai, Wiley & Sons, New York, 1994, p. 695–713.
- [22] R. R. Schmidt, Angew. Chem., Int. Ed. 1986, 25, 212.
- [23] S. Hanessian, J. Banoub, Carbohydr. Res. 1977, 53, C13.

Received September 14, 2012